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Diffusion in multicomponent systems: a free energy approach
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Abstract

This work examines diffusion in ternary non-ideal systems and derives coupled non-linear equations based on a non-equilibrium

thermodynamic approach in which an explicit expression for the free energy is substituted into standard diffusion equations. For

ideal solutions, the equations employ four mobility parameters (Maa, Mab, Mba, and Mbb), and uphill diffusion is predicted for certain

initial conditions and combinations of mobilities. For the more complex case of ternary Simple Mixtures, two non-ideality pa-

rameters (vac and vbc) that are directly related to the excess free energy of mixing are introduced. The solution of the equations is

carried out by means of two different numerical schemes: (1) spectral collocation and (2) finite element. An error minimization

technique is coupled with the spectral collocation method and applied to diffusional profiles to extract the M and v parameters. The

model satisfactorily reproduces diffusional profiles from published data for silicate melts. Further improvements in numerical and

experimental techniques are then suggested.

� 2004 Elsevier B.V. All rights reserved.

Keywords: Uphill diffusion; Ternary mixtures; Non-ideal solutions; Silicate melts
1. Introduction

Diffusion in multicomponent systems plays an im-

portant role in numerous natural and industrial pro-

cesses, from magmatic and metamorphic petrology, to

the production of polymers and metal alloys. Often

complicating attempts to model the diffusional process is

a phenomenon called ‘‘uphill diffusion’’ in which diffu-

sion of at least one of the components occurs in the
direction counter to that of its concentration gradient.

This phenomenon was first suggested in the theoretical

study of Toor [1] and subsequently demonstrated ex-

perimentally in numerous works.

To illustrate this behavior, it is instructive to consider

the experiment conducted by Oishi et al. [2] (Fig. 1) in

which a ternary diffusion couple was constructed with

initial concentration gradients in the Al2O3 and SiO2

components and a uniform CaO concentration. From a
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simple Fickian approach to diffusion, it might be ex-
pected that as no initial CaO gradient existed, no change

in its concentration would be observed during the

experiment. However, after termination of the experi-

mental run, pronounced uphill diffusion was neverthe-

less evident in the CaO component. Such experiments

have demonstrated that the diffusion of one component

is often strongly coupled to that of the other compo-

nents in the system. Studies examining silica melts and
glasses [2–8] and magmatic and metamorphic minerals

[9–12] indicate that uphill diffusion is likely to be a sig-

nificant factor in determining the evolution of these high

temperature systems.

While a number of different approaches have been

proposed for the treatment of diffusion in multicompo-

nent systems, such as relaxation velocity modeling [13],

irreversible thermodynamic analysis [14,15], the modi-
fied binary diffusion model [16], the Maxwell–Stefan

formulation, e.g. [17], and the ‘‘flux reversal’’ model [18],

perhaps the most widely used method is that of ‘‘D
matrix modeling’’ [19]. In this approach, Fick’s law is

modified so that the flux of each component is deter-

mined not only by its own gradient, but by the gradients
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Nomenclature

List of symbols

a; b; c chemical components

n number of moles (mol)

D diffusion coefficient (m2 s�1)
G generalized free energy (Jmol�1/(RT))

Gideal ideal free energy of mixing (Jmol�1/(RT))

Gmix free energy of mixing (Jmol�1/(RT))

Gxs excess free energy of mixing (Jmol�1/(RT))

J normalized molar flux (molm�2 s�1)/(molm�3)

M mobility coefficient (m2 s�1)

M memory function (s�1)

R universal gas constant (Jmol�1 K�1)

T temperature (K)

Greek symbols

l chemical potential (Jmol�1/(RT))

/ mole fraction

v non-ideality parameter (Jmol�1/(RT))
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of the other components as well. For a ternary system

two coupled equations for the fluxes of two of the three

components, say a and b, can be written in the form [20]

Ja ¼ �ðDaar/a þ Dabr/bÞ; ð1aÞ

Jb ¼ �ðDbar/a þ Dbbr/bÞ; ð1bÞ
where J is a mole density normalized flux (dimensions of

[LT�1]), /i is a mole fraction (
P

/i ¼ 1), Daa and Dbb are
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Fig. 1. Concentration profiles for a CaO–Al2O3–SiO2 liquid state sil-

icate diffusion couple. Initial concentrations are indicated by solid lines

while concentrations measured after 11 min are represented by

markers. The horizontal distance axis has been normalized by
ffiffi
t

p
. Data

from Oishi et al. [2].
the ‘‘intrinsic’’ diffusion coefficients, and Dab and Dba are

‘‘mutual’’ diffusion coefficients. While the D matrix

method is attractive due to its relative simplicity, de-

termining the values of the coefficients for different

systems, such as silicate melts, involve both theoretical

and practical difficulties, e.g. [6,7,21,22].

One of the main problems associated with D matrix

modeling is the uncertainty related to the composi-
tional dependence of the coefficients. While a strong

relationship between the concentration of components

and the magnitudes of the coefficients has been dem-

onstrated experimentally in silicate systems [8], very

little is typically known concerning how these coeffi-

cients change with physical parameters, such as con-

centration, temperature, and pressure. Thus, in real

systems where compositional changes have the po-
tential to be relatively large, D coefficients determined

in a specific concentration range may have a limited

predictive capability.

In addition to these limitations of the D matrix

method, there are often difficulties in reproducing ex-

perimentally measured profiles. For instance, using the

D matrix approach, Kress and Ghiorso [21] were un-

successful in reproducing the second order features ob-
served in multicomponent diffusion experiments with

silica glasses. As a result, they concluded that alternative

models, possibly based on free energy rather than con-

centration gradients, are required in order to fully cap-

ture the behavior of such complex systems. Although

more computationally demanding, models that describe

diffusion in terms of free energy gradients have the po-

tential to more accurately match experimental data and
predict system behavior.

In this paper, the efficacy of one possible free energy

approach is explored and its application to real multi-

component systems is examined. Non-equilibrium ther-

modynamic theory and a specific expression for the free

energy of mixing are used as a basis to develop coupled

non-linear equations governing diffusion in ternary

systems (Section 2). These equations are then solved
numerically (Section 3) and compared to data from

diffusion experiments (Section 4). In Section 5, the re-
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sults are discussed and implications for future theoreti-

cal, numerical, and experimental studies are examined.
2. Theory

As discussed in the previous section, uphill diffusion

often occurs in multicomponent systems in which con-

centration gradients exist. In addition to being associ-

ated with these systems, uphill diffusion is also a typical

feature of phase separation processes, in which initially

homogeneous mixtures may separate into distinct pha-

ses as a result of changes in system parameters.
In order to describe phase separation in a binary

system, Cahn and Hilliard [23] introduced an additional

term, describing the effect of interfacial energy, into the

expression for the total free energy of the system. Sub-

sequent theoretical efforts examining phase separation in

binary and ternary systems have generally focused on

developing expressions that describe the redistribution

of free energy with time within such systems. Motivated
by the study of Nauman and He [24] which examined

phase separation involving multiple components, an

alternative approach to multicomponent diffusion in

single-phase systems is presented here. Although limited

to three component systems, the derivation can be ex-

tended to deal with a greater number of components

with relative ease.

Before developing expressions for the mass fluxes in
ternary systems, the ‘‘generalized’’ expression for the

chemical potential, l, of each of the three components,

a, b, and c, will be defined as [24]

la ¼
dnG
dna

� �
T ;P ;nb;nc

; lb ¼
dnG
dnb

� �
T ;P ;na;nc

;

lc ¼
dnG
dnc

� �
T ;P ;na;nb

; ð2Þ

where na þ nb þ nc ¼ n is the total number of moles, and

G is the generalized free energy of the system. The d
notation represents the variational partial derivative

defined as

df
dg

¼ of
og

� �
�r � of

org

� �
ð3Þ

in which the derivative of f with respect to g is expressed

as a function of both g and the gradient of g. While the

concentration gradients are not generally thought to

contribute to the chemical potentials in non-phase sep-
arating systems, an assumption that reduces the varia-

tional derivative to the standard partial derivative, such

formalism is crucial for the treatment of mass transfer

during phase separation, and will be retained for the

sake of generality. In the following development, the

chemical potentials have been normalized by RT (R is

the gas constant and T is temperature).
By combining the definitions in (2) and (3) with

classical thermodynamic theory, two independent ex-

pressions can be obtained for the components a and b
[25]

la ¼ G� /b
dG
d/b

� �
/c

� /c
dG
d/c

� �
/b

; ð4aÞ

lb ¼ G� /a
dG
d/a

� �
/c

� /c
dG
d/c

� �
/a

: ð4bÞ

Importantly, these expressions satisfy Euler’s theorem

/ala þ /blb þ /clc ¼ G ð5Þ

and the Gibbs–Duhem equation

/arla þ /brlb þ /crlc ¼ 0: ð6Þ

For a non-phase separating system, the generalized

free energy, G, reduces to the free energy of mixing,

Gmix, and it can be shown that the gradients of the

chemical potentials are then given by the expressions

(see Appendix A)

rla ¼ �/br
oGmix

o/b

� �
/c

� /cr
oGmix

o/c

� �
/b

ð7aÞ

and

rlb ¼ �/ar
oGmix

o/a

� �
/c

� /cr
oGmix

o/c

� �
/a

: ð7bÞ

By substituting /c with 1� /a � /b the following is

obtained:

rla ¼ �/br
oGmix

o/b

� �
/a

þ 1ð � /a � /bÞr
oGmix

o/a

� �
/b

ð8aÞ
and

rlb ¼ �/ar
oGmix

o/a

� �
/b

þ 1ð � /a � /bÞr
oGmix

o/b

� �
/a

:

ð8bÞ
Furthermore, (8) can be rewritten in order to express the

chemical potential gradients as functions of the con-

centration gradients

rla ¼ �/b
o2Gmix

o/2
b

 !
/a

r/b þ ð1� /a � /bÞ

� o2Gmix

o/2
a

 !
/b

r/a ð9aÞ

and
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rlb ¼ �/a
o2Gmix

o/2
a

 !
/b

r/a þ 1ð � /a � /bÞ

� o2Gmix

o/2
b

 !
/a

r/b: ð9bÞ

If it is assumed that the driving force for diffusion of a

given species is only dependent on the chemical potential

gradients of the two independent components, a and b,
the expressions for the fluxes are given by [26]

Ja ¼ �½Maa/arla þMab/arlb�; ð10aÞ

Jb ¼ �½Mba/brla þMbb/brlb�; ð10bÞ
where the M coefficients are mobility terms or diffusiv-

ities [L2T�1]. The parameters Maa and Mbb must neces-
sarily be positive, although Mab and Mba may be either

positive or negative. The magnitudes of the cross terms

reflect the relative degree of coupling between the two

fluxes. The substitution of (9) into (10) yields

Ja ¼ �Maa/a ð1

2
4 � /a � /bÞ

o2Gmix

o/2
a

 !
/b

r/a

� /b
o2Gmix

o/2
b

 !
/a

r/b

3
5

þMab/a /a
o2Gmix

o/2
a

 !
/b

r/a

2
4 � 1ð � /a � /bÞ

� o2Gmix

o/2
b

 !
/a

r/b

3
5 ð11aÞ

and

Jb ¼ Mbb/b /a
o2Gmix

o/2
a

 !
/b

r/a

2
4 � 1ð � /a � /bÞ

� o2Gmix

o/2
b

 !
/a

r/b

3
5�Mba/b ð1

2
4 � /a � /bÞ

� o2Gmix

o/2
a

 !
/b

r/a � /b
o2Gmix

o/2
b

 !
/a

r/b

3
5: ð11bÞ

Rearranging, it follows that

Ja ¼ ½Mab/
2
a �Maa/að1�/a �/bÞ�

o2Gmix

o/2
a

 !
/b

r/a

þ Maa/a/b½ �Mab/að1�/a �/bÞ�
o2Gmix

o/2
b

 !
/a

r/b

ð12aÞ

and
Jb ¼ ½Mbb/a/b �Mba/bð1� /a � /bÞ�
o2Gmix

o/2
a

 !
/b

r/a

þ ½Mba/
2
b �Mbb/bð1� /a � /bÞ�

o2Gmix

o/2
b

 !
/a

r/b:

ð12bÞ

It is clear from (12) that precise knowledge of Gmix as a

function of composition is crucial in order to determine

mass transport in diffusive ternary systems. In such

systems, the free energy of mixing is given by the ex-

pression

Gmix ¼ Gideal þ Gxs; ð13Þ
where Gideal is the entropic contribution to the free en-
ergy characteristic of ideal systems such that

Gideal ¼ /a ln/a þ /b ln/b þ ð1� /a � /bÞ
� lnð1� /a � /bÞ ð14Þ

and Gxs is the enthalpic contribution for non-ideal

systems.

In non-ideal systems (i.e., Gxs 6¼ 0), a suitable ex-

pression for Gxs may be obtained from the Simple

Mixture model for three components [25,27,28] yielding

Gxs ¼ vab/a/b þ vac/að1� /a � /bÞ
þ vbc/bð1� /a � /bÞ: ð15Þ

In this formulation vab, vbc, and vac are thermodynamic

parameters that account for non-ideal interactions be-

tween the different species. These parameters may be

either positive or negative, reflecting the endothermic or

exothermic nature of the mixing process, respectively.

Values for v in silicate minerals are generally found to be

temperature dependent, possessing either positive or

negative values with a typical range of 0–2, although
higher values have been reported [28]. Significantly, the

ternary Simple Mixture model has often been used to

describe geological systems [28].

Adopting the expressions in (14) and (15), the second

partial derivatives of Gmix with respect to composition

are thus given by

o2Gmix

o/2
a

 !
/b

¼ 1� /b � 2vac/að1� /a � /bÞ
/að1� /a � /bÞ

ð16aÞ

and

o2Gmix

o/2
b

 !
/a

¼ 1� /a � 2vbc/bð1� /a � /bÞ
/bð1� /a � /bÞ

: ð16bÞ

By substituting (16) into (11) and simplifying, the full

expressions for the fluxes Ja and Jb become

Ja ¼ Laar/a þ Labr/b ð17aÞ
and
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Fig. 2. Model diffusional profiles at different times in an ideal ternary

solution. Uphill diffusion can clearly be observed in the a component

together with a slight degree of asymmetry. Arbitrary time and dis-

tance units have been used and zero-flux boundary conditions have

been imposed. Component c is taken as the dependent component,

with values for the mobilities ofMaa ¼ 1,Mab ¼ �0:5,Mba ¼ �0:5, and

Mbb ¼ 1.
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Jb ¼ Lbar/a þ Lbbr/b; ð17bÞ
where

Laa � ½Mab/a �Maað1� /a � /bÞ�

� 1� /b � 2vac/að1� /a � /bÞ
ð1� /a � /bÞ

� �
; ð18aÞ

Lab � ½Maa/a/b �Mab/að1�/a �/bÞ�

� 1�/a � 2vbc/bð1�/a �/bÞ
/bð1�/a �/bÞ

� �
; ð18bÞ

Lba � ½Mbb/a/b �Mba/bð1� /a � /bÞ�

� 1� /b � 2vac/að1� /a � /bÞ
/að1� /a � /bÞ

� �
; ð18cÞ

Lbb � ½Mba/b �Mbbð1� /a � /bÞ�

� 1� /a � 2vbc/bð1� /a � /bÞ
ð1� /a � /bÞ

� �
: ð18dÞ

Assuming a system in which density remains constant,

the continuity equations for the mole fractions are de-

fined as

o/a

ot
¼ �r � Ja ð19aÞ

and

o/b

ot
¼ �r � Jb: ð19bÞ

Thus, the non-linear system of partial differential
equations in (17)–(19) describe ternary diffusion in

Simple Mixture solutions in terms of four mobility and

two thermodynamic parameters.

From a comparison of (1) with (17), it can be seen

that the flux expressions developed here differ from the

D matrix model in a number of ways. One of the most

obvious differences between the two models is apparent

from an examination of the L and D matrices. Signifi-
cantly, the free energy approach replaces the constant D
coefficients with expressions that are explicitly concen-

tration dependent. Thus, the mobility parameters, M ,

are expected to be less influenced by concentration than

the D coefficients.

The v parameters introduce additional degrees of

freedom which can resolve differences between theory

and experimental observations. Notably, the v parame-
ters of the free energy model can be used to constrain

thermodynamic values, such as the excess free energy of

mixing, an approach similar to that suggested by Cha-

kraborty [29]. Importantly, these thermodynamic pa-

rameters are crucial in understanding a variety of

processes, including mineral crystallization in magmatic

and metamorphic systems. Thus, in addition to poten-

tially presenting a more accurate description of multi-
component systems, the model could be applied to

diffusional data to constrain thermodynamic parameters
which prove impractical to obtain by alternative

methods.
3. Numerical analysis

In order to solve the diffusion equations in (19) for

1D systems, two different numerical schemes were de-

veloped and compared. One scheme implemented a fi-

nite element method using the FEMLAB� software

package, while the other was based on a spectral collo-

cation method [30,31]. In the finite element scheme, a

mesh consisting of 240 Lagrange quadratic elements was
adopted, together with a time dependent fifth order

solver based on the numerical differentiation formulas

(ode15s function in MATLAB�). Increasing the mesh

density was found to have no significant effect on the

solution. Although stable solutions were usually ob-

tained using this method, it was noted that for certain

combinations of initial conditions and values of M and

v, numerical instabilities became dominant preventing
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convergence. Such instabilities are a consequence of the

inherent non-linearity of the L coefficients.

In the spectral collocation numerical scheme,

Chebyshev polynomials were chosen as the basis func-

tions and the residual function was minimized at the
collocation points of the Chebyshev–Gauss–Lobatto

mesh. The physical space was divided into two equal

subdomains to obtain a higher density of points in the

interfacial region where the concentration gradients are

steepest. The solution of the equations was then ap-

proximated on each subdomain by Chebyshev polyno-

mials of order 48. The solutions over the two

subdomains were matched at the common interface by
imposing continuity of the approximating functions and

their first derivatives. The scheme was implemented us-

ing the MATLAB� programming environment. Inter-

estingly, this numerical solution scheme produced stable

results over a wider range of initial conditions and

model parameters than the finite element method. Al-

ternative strategies that may further increase the accu-

racy and stability of the solutions are currently being
explored.
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Fig. 3. (a) Model diffusional profiles for an ideal solution demonstrating p

Maa ¼ 1, Mab ¼ 0:5, Mba ¼ 0:5, and Mbb ¼ 1 and the dashed line values of Ma

shows the reversal of the uphill trend with values for the mobility parameters

conditions are the same as those for Fig. 2. (b) Model diffusional profiles fo

represents mobility values of Maa ¼ 2, Mab ¼ �1, Mba ¼ 3, and Mbb ¼ 1 (t ¼
culated profiles for mobility values of Maa ¼ 0:9, Mab ¼ 0:5, Mba ¼ 0:5, and

/bð�1 < x6 0Þ ¼ 0:25, /að0 < x < 1Þ ¼ 0:18, /bð0 < x < 1Þ ¼ 0:35.
The difference between the solutions obtained using

the two schemes was minimal. In this section, the results

from the finite element method are presented. The initial

conditions were defined by splitting the domain into two

equal subdomains containing different concentrations of
components and solutions were obtained for zero-flux

boundary conditions.

Model diffusional profiles obtained by solving (17)–

(19) with v ¼ 0 demonstrate that uphill diffusion can

occur given certain values of M , even in ideal ternary

solutions (Fig. 2), and such behavior is in agreement

with that predicted by Cooper [32] and Nishiyama [15].

Furthermore, it can be seen that while the position of
the ‘‘uphill’’ concentration peak shifts with time, the

magnitude does not change significantly, reflecting the

relatively long time required for the complete relaxation

of the phenomenon. Significantly, the profiles produced

during the simulations strongly resemble those of re-

ported experimental diffusion couples [3–5,8,21].

Due to the complexity of the equations, a systematic

parametric analysis was found to be of limited use in
assessing the influence of the different model parameters.
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of Maa ¼ 0:5, Mab ¼ 0:5, Mba ¼ 0:5, and Mbb ¼ 1 (t ¼ 0:05). The initial

r an ideal solution demonstrating second order features. The solid line

0:01) with the initial conditions of Fig. 2. The dotted line shows cal-

Mbb ¼ 0:1 (t ¼ 0:05) with initial conditions of /að�1 < x6 0Þ ¼ 0:2,
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Instead, a discussion of the features that the equations

can produce demonstrates the potential for the free en-

ergy model to account for some of the complex behavior

observed in experimental systems.

While near symmetric behavior can be observed in
Fig. 2, one of the interesting features of the model is its

ability to produce markedly asymmetric profiles. Al-

though asymmetry in both the centers of concentration

peaks and their magnitude are sometimes observed in

experiments, e.g. [8,21], the D matrix model is unable

to reproduce such behavior. As a result, such obser-

vations have typically been attributed to experimental

error. In Fig. 3(a), pronounced off-center uphill diffu-
sion profiles can be observed for certain values of M ,

with a reversal in the trend being produced by chang-

ing the mobility parameters. Furthermore, in addition

to a high degree of asymmetry, second order features

can also be produced with certain initial conditions and

values of M (Fig. 3(b)). Clearly, uphill diffusion and the

development of second order features, such as those

visible in Fig. 3, are also dependent on the initial
concentration steps. Significantly, in an experimental

study of silicate melts, Kress and Ghiorso [21] con-
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Fig. 4. Model diffusional profiles for different values of v. The solid lines repr

profiles for vac ¼ 2 and vbc ¼ �2, and the dotted lines represent diffusion for v
values for the mobility parameters, are the same as those for Fig. 2 (t
/bð�1 < x6 0Þ ¼ 0:2, /að0 < x < 1Þ ¼ 0:05, /bð0 < x < 1Þ ¼ 0:475.
cluded that the discrepancies between the D matrix

model and the complex second order features observed

in their experiments suggested that alternative models

were required.

When solving (17)–(19) for v 6¼ 0, it can be seen that
the non-ideality v parameters also have a significant

effect on the diffusional profiles (Fig. 4). However,

generalizations concerning the overall influence of v are

difficult to make primarily because v can act so as to

enhance or suppress uphill diffusion and asymmetric

behavior. Specifically, for the initial conditions and

values of M examined in Fig. 4(a), the greatest level of

enhancement occurs for vac ¼ 2 and vbc ¼ �2, while the
greatest level of ‘‘suppression’’ occurs at vac ¼ �2 and

vbc ¼ 2. However, for the different initial conditions

examined in Fig. 4(b), the most asymmetric features,

similar to those reported by [33], are obtained for

vac ¼ �2 and vbc ¼ 2. The physical meaning associated

with positive and negative values of v was discussed

following (15).

As evident from the examples presented in this sec-
tion, the free energy model has the ability to accurately

capture a wide range of experimentally observed be-
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esent ideal solutions (i.e. vac ¼ 0 and vbc ¼ 0), the dashed lines indicate

ac ¼ �2 and vbc ¼ 2. (a) Initial and boundary conditions, as well as the

¼ 0:02). (b) Initial conditions are given by /að�1 < x6 0Þ ¼ 0:15,
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havior in ternary systems. Furthermore, the model is

able to produce diffusional profiles that cannot be re-

produced by the simpler Fickian approach of the D
matrix model.

While we stress that the free energy model is local in
space and time, we do not exclude the possibility that

the inherent disorder of certain systems can introduce

memory effects in the profiles. In order to incorporate

such effects into the free energy model, an approach

similar to that suggested by Dentz et al. [34] could be

adopted. This model is based on the Continuous Time

Random Walk (CTRW) theory and introduces a time

memory function, MðtÞ. The equations to describe a
ternary system can be expressed concisely as a convo-

lution in time of the memory function and the diver-

gence of the flux

o/a

ot
¼ �

Z t

0

dt0Maðt � t0Þr � Jaðt0Þ; ð20aÞ

o/b

ot
¼ �

Z t

0

dt0Mbðt � t0Þr � Jbðt0Þ: ð20bÞ
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Fig. 5. Comparison of the free energy model profiles (solid lines) with exper

Wakabayashi and Oishi [4]. The best fit for the D matrix model is also show

minimization technique produced the following free energy model parameter

MNa2O–CaO ¼ 3:28� 10�11 m2 s�1, MNa2O–Na2O ¼ 3:59� 10�11 m2 s�1, vCaO–Si

parameters are DCaO–CaO ¼ 2:82� 10�11 m2 s�1, DCaO–Na2O ¼ �6:52� 10�11

m2 s�1.
For a detailed account of the CTRW theory, the inter-

ested reader is referred to [34] and references therein.

In the next section, a direct comparison of the free

energy model in (17)–(19) with data from specific silicate

systems will be explored.
4. Comparison with experimental data

Examination of experimental data serves two main

purposes in the present study: (1) to test the ability of

the free energy model to fit specific experimental data,

and (2) to constrain the M and v parameters in a real
system. Before proceeding, it is useful to briefly review

the criteria demanded of experimental data for a

meaningful comparison between theory and experi-

mental results.

Although ternary diffusion has been explored in a

variety of systems, it is convenient to study data from

silicate melts and glasses as detailed concentration pro-

files have been reported in numerous studies. Typically,
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imental data (points) from two different diffusion couples reported by

n (dashed lines). Setting SiO2 as the dependent component, an error

s: MCaO–CaO ¼ 3.63� 10�11 m2 s�1, MCaO–Na2O ¼ �3:38� 10�11 m2 s�1,

O2
¼ 3:21, and vNa2O–SiO2

¼ 3:01. By comparison, the D matrix model

m2 s�1, DNa2O–CaO ¼ �2:81� 10�11 m2 s�1, DNa2O–Na2O ¼ 8:14� 10�11
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such diffusion experiments involve the preparation of a

diffusion couple consisting of two initially homogeneous

glasses of different compositions. After heating for a

certain length of time, the couple is quenched and the

compositional profiles measured. In order to reliably fit
the D matrix model to experimental data for ternary

systems, at least two independent experiments are re-

quired in which the compositions of the two couples

differ significantly [22].

As an additional two parameters are introduced in

the free energy model, a third experiment is ideally re-

quired in order to accurately constrain the M and v
parameters. While a number of different studies have
reported data concerning diffusion couples in silica

melts, the dataset from Wakabayashi and Oishi [4], de-

scribing diffusion couples in CaO–Na2O–SiO2 melts at

1500 �C, was found to be the most suitable for the

purposes of the present study. Although only two pro-

files were available in the dataset, the initial conditions

produced relatively stable configurations for the calcu-

lation of the profiles.
By coupling the spectral collocation method de-

scribed in the previous section with an error minimiza-

tion technique that simultaneously determined the error

on two digitized datasets, values for M and v were ob-

tained. In calculating the profiles, differences in the

molar masses of the components have not been ac-

counted for, and this simplification implies that mass

and molar fluxes are interchangeable. Results of the
application of the minimization technique to the data of

[4] can be seen in Fig. 5 together with the D matrix

model profiles. Values for the model parameters are

reported in the caption to Fig. 5. It can be seen that

there is a satisfactory agreement between the free energy

model and the experimental data, comparable to that of

the best fit obtained with the D matrix model. It is ex-

pected that the level of agreement between the data and
the free energy model will be further improved when the

numerical instability difficulties inherent in applying the

model are resolved.

Consideration of the free energy model in the context

of these experiments highlights the potential of this

model to contribute to a fuller physical understanding of

diffusional processes. For example, the magnitude of the

‘‘mutual’’ mobility parameters,Mab andMba, is similar to
that of the ‘‘intrinsic’’ mobility parameters,Maa andMbb,

suggesting that cross diffusion in this system is a process

that is equally important in determining the diffusion of

both components. Such a conclusion cannot be drawn

from an examination of the D coefficients. Furthermore,

the positive values obtained for the v parameters imply

that the excess free energies of mixing for both the CaO–

SiO2 and Na2O–SiO2 systems are also positive, and
therefore endothermic processes. Importantly, the mag-

nitudes of these parameters retrieved from the minimi-

zation procedure are physically reasonable.
5. Discussion

From the numerical analysis and comparison with

experimental data presented here, it can be seen that the

free energy model is capable of describing many of the
expected diffusional features in ternary systems. Never-

theless, several issues relating to the application of the

model must be recognized and they will be discussed

below.

One obvious theoretical uncertainty concerns the

possible influence of concentration on the mobility and v
parameters. While these parameters might be expected

to be less affected by concentration than diffusion coef-
ficients, it remains possible that compositional depen-

dence may account for at least some of the differences

observed between the model and experimental data. The

choice of function used to describe the free energy of the

system could also require reexamination. Although

convenient, the Simple Mixture model may not accu-

rately describe the system and more complex expressions

for the free energy, such as the Margules equation [28],
might be required.

As mentioned above, numerical instabilities were

observed for certain combinations of parameters and

initial conditions. When attempting to minimize the er-

ror with respect to experimental data, ‘‘unstable’’ com-

binations of parameters are disregarded despite the

possibility that they may be physically feasible and

could even provide good fits. Furthermore, even if a
numerical algorithm is capable of successfully evaluat-

ing every possible combination of parameters, standard

minimization techniques are likely to have difficulty in

successfully finding the optimal combination for the six

parameters. Thus, the successful resolution of these

numerical difficulties is clearly an important future step.

In addition to the numerical difficulties, another

challenge is posed by the intrinsic uncertainty associated
with experimental systems. Even relatively small exper-

imental errors may make it difficult to reliably retrieve

model parameters, and while a number of precise ex-

perimental studies have been published examining dif-

fusion in ternary systems, continued improvements in

analytical techniques are likely to reduce experimental

error even further. In addition, improved experimental

design might also help to determine conclusively whe-
ther or not the asymmetric features sometimes noted in

concentration profiles are diffusional or density related

phenomena [35].
6. Conclusions

This study proposes a set of coupled non-linear equa-
tions describing diffusion in ternary systems based on a

free energy approach. These equations have been solved

for 1D configurations and compared to experimental
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data. The model was found to be successful in capturing

much of the qualitative and quantitative behavior of

multicomponent systems. Unlike current models, the free

energy approach reproduces asymmetry and secondorder

features observed in experiments. Furthermore, the pa-
rameters in the diffusion equations representing the en-

thalpic contribution to the free energy can bemeasured in

independent thermodynamic experiments. Currently be-

ing explored is the application of the equations to more

comprehensive datasets and the examination of alterna-

tive functions for the free energy of mixing. Future im-

provements in both computational and experimental

methods are likely to be the key towards a more complete
understanding of diffusion in multicomponent systems.
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Appendix A

The chemical potential of component a in a ternary

single-phase system is given by [25]

la ¼ Gmix � /b
oGmix

o/b

� �
/c

� /c
oGmix

o/c

� �
/b

; ðA:1Þ

where the chemical potential has been normalized by

RT . The gradient of the chemical potential may be

written as

rla ¼ rGmix �r /b
oGmix

o/b

� �
/c

" #

�r /c
oGmix

o/c

� �
/b

" #
ðA:2Þ

and the expression may be expanded to obtain

rla ¼ rGmix � oGmix

o/b

� �
/c

r/b

� /br
oGmix

o/b

� �
/c

" #
� oGmix

o/c

� �
/b

r/c

� /cr
oGmix

o/c

� �
/b

" #
: ðA:3Þ

From the chain rule, the gradient of the free energy of
mixing is equal to

rGmix ¼ oGmix

o/b

� �
/c

r/b þ
oGmix

o/c

� �
/b

r/c ðA:4Þ
and (A.1) thus simplifies to

rla ¼ �/br
oGmix

o/b

� �
/c

� /cr
oGmix

o/c

� �
/b

: ðA:5Þ

Clearly, similar expressions can be obtained for the

other components in the system.
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